Individualism and Nonindividualism in the Application of Nonhuman Animal Welfare to Policy

J. W. Yeates

To link to this article: http://dx.doi.org/10.1080/10888705.2013.768918

Published online: 24 Jun 2013.
Individualism and Nonindividualism in the Application of Nonhuman Animal Welfare to Policy

J. W. Yeates
Centre for Ethics in Medicine and Department of Clinical Veterinary Science, University of Bristol, United Kingdom

Science-based policy making and assessments are individualistic insofar as they are sensitive to interindividual differences, intraindividual connectivity, or both. Several scientists and policymakers have argued that nonhuman animal welfare should relate to individual animals, but there are reasons for both individualistic and nonindividualistic approaches. Opportunities to develop more individualistic approaches include employing concepts such as “quality-of-life,” “welfare opportunities,” and greater stockperson flexibility.

Keywords: animal welfare science, individualism, opportunities, pain, policy, telos

Whether nonhuman animals are thought of as individuals is an important question with significant implications for their welfare. Many overarching concepts of animal welfare appear to consider that it relates to individual animals, including the initial report on intensive farming by Brambell (1965), early definitions of animal welfare such as “the state of the individual animal as regards its attempts to cope with its environment” (Broom, 1988, p. 5), and the Farm Animal Welfare Council’s (FAWC) statements that animals are “deserving of respect as individuals as well as types” (FAWC, 1998, par. 24), and that “to be concerned about welfare is to be concerned about the quality of life of individual animals” (FAWC, 2009, par. 36).
This article assesses whether and when animal welfare science and its applications in policy should use individualistic concepts. It characterizes individualism and identifies salient cases where animal welfare is considered individualistically or nonindividualistically. It then considers reasons for recognizing that animal welfare methodologies are based on cultural (Fraser, 2008; Lund, Coleman, Gunnarsson, Appleby, & Karkinen, 2006), ethical (Sandøe, Christiansen, & Appleby, 2003; Tannenbaum, 1991), and metaphysical (Buchanan, 2009; Carter, 2009) presuppositions. It concludes that individualistic and nonindividualistic approaches are both useful and identifies ways in which future animal welfare science and policy might be more individualistic where appropriate.

WHAT IS INDIVIDUALISM?

All animal welfare science and policies apply to animals who are individuals. But approaches within animal welfare science or policy are not individualistic simply insofar as they apply to individuals any more than uniforms are individualistic simply because individuals wear them. Rather, animal welfare science and policies are individualistic insofar as they consider each animal an individual. This involves recognizing (a) that each individual animal is separate (i.e., has a different identity) from each other and (b) that each individual is identical (i.e., has the same identity) to himself or herself over time and across different elements of his or her biology and welfare.

A concept can be identified as individualistic if there is evidence of some level of individuation. This individuation involves appreciation of both individuals’ separateness and identicalness. Appreciating separateness can be evinced by recognizing differences between individual animals either by considering the particular characteristics of each individual or through awareness of which animal is affected. Archetypal examples are approaches that involve the explicit identification of an individual animal, for example, by a “rigid designator” like a name (Kripke, 1980). Appreciating identicalness can be evinced by recognizing connections between aspects of each individual animal’s biology and welfare either by holistically considering multiple component elements of the same individual’s welfare across multiple domains or through awareness of the same individual’s welfare states over a period of time (up to the animal’s whole life).

A concept may also be more individualistic insofar as it refers to another concept that satisfies the other set of criteria. Archetypical examples are concepts with a reflexive content (Castañeda, 1966), such as self-fulfillment (achieving goals that an individual has set for himself or herself) or autonomy (an individual’s control of his or her actions). Thus, an approach can be classified as more individualistic insofar as it is more sensitive to interindividual differences, intraindividual connectivity, or both of them.
WHAT IS NONINDIVIDUALISM?

Animal welfare scientific and policy-making approaches may be nonindividualistic by not recognizing interindividual differences or intraindividual connectivity or by not recognizing either of them.

Approaches may not recognize interindividual differences because they either consider multiple animals or consider individual animals only as part of some undifferentiated multitude. Some animal welfare concepts relate to a class of animals, such as a type, considering each individual a replaceable representative of that class. Other animal welfare concepts relate to a group of animals, such as a herd, considering each individual an interchangeable component of that group. Some research specifically addresses concepts that necessarily relate to multiple animals, such as disease prevalence, group size, and stocking density. Many researchers who generate data about individuals analyze it in a way that removes any reference to individuals, most obviously when reporting results as averages or “species” traits. Other scientific models go further and deliberately reduce the effects of individual differences by using large numbers of animals, genetic or environmental homogenization, or aggregative statistical analyses. Similarly, some policies consider the overall level of suffering, added up across all animals, rather than the distribution of that suffering across individuals. Other policies are applied homogeneously to multiple animals, for example, in “routine” species-specific husbandry protocols that are nonindividualistic because they ignore interindividual variation.

Approaches may not recognize intraindividual connectivity because they focus only on some component states of an animal’s welfare. These may be specific mental states such as pain; specific inputs such as genetics or husbandry; or specific outcome variables such as body weight, hormone levels, or specific behaviors (e.g., Bunger et al., 2005; Stilwell, De Carvalho, Lime, & Broom, 2008). These concepts are nonindividualistic where they are applied without any recognition of which animal suffers these states and fail to recognize the connectivity of aspects of an animal’s psychology and physiology.

Some animal welfare approaches may not recognize interindividual differences or intraindividual connectivity. For example, an assessment of the overall hock lesion incidence within a herd both considers only some elements of each animal’s welfare (injuries) and aggregates that assessment across multiple animals (the herd).

REASONS FOR NONINDIVIDUALISM

There are reasons for using individualistic and nonindividualistic approaches for different purposes. Nonindividualism may be appropriate in many cases of ani-
mal welfare in science and policy making for practical, ethical, and metaphysical reasons.

Practical reasons nonindividualistic approaches may be preferable involve financial and pragmatic factors. In scientific work, it may be simpler (and cheaper) to experimentally test hypotheses concerning specific variables than to measure more individualistic phenomena that are expected to vary between individuals in more complex ways. Homogeneous animals may be more suitable for repeating experiments or for using narrowly defined scientific protocols. In policy, it may be easier to implement and enforce universal policies that disregard individual variations. For example, Diehl et al. (2001) recommended a generic recovery period for rats after blood sampling despite evidence from Scipioni, Diters, Myers, and Hart (1997) of considerable variation between rats’ responses. This “one-size-fits-all” suggestion provided a simple and memorable message. Similarly, environmental enrichment is commonly provided in standard housing protocols in order to ensure that every animal receives enrichment—allowing too much flexibility could risk depriving some animals of valuable resources.

Ethically, animal welfare can be (and has often been) associated with utilitarian positions that justify nonindividualistic approaches. For example, a utilitarian basis specifically supports assessment of overall welfare harms using the calculations of intensity, duration, and number (Hume, 1962) as advocated by many animal welfare scientific, assessment, or policy-making approaches (e.g., Kirkwood, Sainsbury, & Bennett, 1994; Main, Whay, Green, & Webster, 2003; Müller-Graf et al., 2008; Whay, Main, Green, & Webster, 2003). Such nonindividualistic assessments can thereby defend policies that harm some individual animals to benefit others, for example, in contiguous culling policies (e.g., FAWC, 2002).

Metaphysically, animals may be nonindividualistically conceptualized. Animal welfare science originated from concerns over animals in intensive farm systems (e.g., Brambell, 1965; Harrison, 1964), and there is a growing literature which suggests that, at least in large-scale or intensive farming systems, such animals are archetypically not individuated by their farmers (Bock & Van Huik, 2007; Serpell, 1999). For example, it is now normal practice that animals are not individuated by names. This may be inevitable because, whereas most companion animal caregivers have one dog or cat (Murray, Browne, Roberts, Whitmarsh, & Gruffyd-Jones, 2010), most U.S. chicken companies own over a million hens (Marcus, 2005). In these cases, nonindividualistic approaches may be more compatible with caregivers’ viewpoints and husbandry systems, although empirical work would be required to determine when individualistic and nonindividualistic approaches are more likely to improve levels of care.

Metaphysically, scientific studies are often concerned with generic kinds. Some biological patterns may be recognizable only if individual-level idiosyn-
crasies are minimized through experimental design or statistical analysis. Other patterns may only be observable at the population level due to random interindividual variation (just as radioactive decay cannot usually be expressed by reference to individual nuclei but must be considered a statistical generalization). In other studies it may be “safer” to analyze group data due to interdependence between individuals (Jason & Elston, 2002; cf. Phillips, 2002). Some measures such as stocking density, group size, and flock flight distance are irreducible generalizations.

More generally, reductionist scientific methodologies are inherently nonindividualistic. Scientific hypotheses and conclusions are often appropriately phrased in terms of animal types. Classifying animals into kinds is necessary for repeatability (unless experiments are to be retested using the same individuals) and for the external validity of generalization from results to real-world situations. The generalization of conclusions beyond individuals is a central part of developing inductive rules that can be applied to other situations (and other individuals) with some power of predictability. At some level, nonindividualistic approaches are needed to generate scientific laws (although the content of such inductions may have reflexive elements) and the loss of detail may be a necessary “laundering process” to develop useful concepts and rules.

REASONS FOR INDIVIDUALISM

There may also be good reasons for more individualistic approaches in animal welfare science and its applications in animal welfare policy, especially given the individualistic concepts suggested by Brambell (1965), Broom (1988), and FAWC (2009). Again, there may be practical, ethical, and metaphysical reasons for more individualistic approaches.

There can be significant variations between individual animals’ physiological and behavioral responses (Bekoff, 1977; Slater, 1981), for example, in primates (Boccia, Laudenslager, & Reite, 1995), chickens (Gebotys, White, & Macdonald, 1984; Nicol, Caplen, Edgar, & Browne, 2009), and fish (Jobling & Koskela, 1996; Martins, Schrama, & Verreth, 2005, 2006; Øverli, Sørensen, & Nilsson, 2006; Silva et al., 2010). Different individuals may show dissimilar pain responses (Mogil, 1999), fearfulness or reactivity levels (e.g., cattle, Boissy & Bouissou, 1995; dogs, Dreschel, 2010), social and play behavior (e.g., cattle, Mülleder, Palme, Menke, & Waiblinger, 2003), maternal behavior (e.g., pigs, Pajor, Kramer, & Fraser, 2000; Pitts, Weary, Fraser, Pajor, & Kramer, 2002), and human-animal interaction (e.g., goats, Lyons, 1989). Individuals may have “personal” tastes or preferences (e.g., cats, Bradshaw, Healey, Thorne, Macdonald, & Arden-Clark, 2000; chickens, Browne, Caplen, Edgar, Wilson, & Nicol, 2010). Interindividual differences may remain due to role differentiation between group
members (Mendl & Deag, 1995) or personal relationships (Burman, Owen, Abouismail, & Mendl, 2008).

Several authors have highlighted cases where such individual variations are relevant to animal welfare (Boissy & Bouissou, 1995; Cloutier & Newberry, 2002; Webster & Hurnik, 1991). For example, Freire, Wilkins, Short, & Nicol (2003) found that a minority of birds in a perchery system spent considerable amounts of time in refuge areas and suffered greater feather damage and loss of weight. Appleby et al. (2002) found similar results for enriched cages. Individual differences may also affect production (van Erp-Van der Kooij et al., 2000).

These variations mean that there are limitations to how successful standardization can be (Chesler, Wilson, Lariviere, Rodriguez-Zas, & Mogil, 2002; Richter, Garner, & Wurbel, 2009). The variations between individuals show that animal welfare science researchers may want to explicitly consider individual effects. As Zayan (1991) noted, “Because individuality may so much affect the quality and/or intensity of stress experiences, traditional physiological indicators of stress may provide contradictory results if studies do not properly take into account the psychological (emotional, perceptive and cognitive) dispositions of the individual group-members subjected to social stress” (p. 207). Consideration of individual differences may make it easier to see some trends. It may separate interindividual variation from mere “noise” by removing the influence of interindividual differences functioning as confounding variables. It may also provide additional information on the internal and external factors that affect individual variation, for example, through Principle Component Analysis (e.g., Bradshaw et al., 2000; Kilgour, Melville, & Greenwood, 2006).

By the same logic, there may be cases in which policies should reflect interindividual differences. Interindividual variations may mean that each animal has different sets of needs and preferences and a different biology, context, and history, which may be better addressed by tailored assessments and policies. Within treatment protocols, variations in pain responses may mean individuals may need different pain-relief protocols, and appreciating interindividual dynamics may help manage aggression (Hessing, Schouten, Wieprika, & Tielen, 1994). Within health plans, the individual identification of production animals may help to prevent or trace diseases (Anonymous Reviewer, personal communication, September 21, 2012). Within husbandry protocols, individualizing stock may help to tailor resources (Bock & Van Huik, 2007; Manteuffel, Langbein, & Puppe, 2009). Within scientific experiments, stress and poor health of individual animals can decrease the validity and reliability of results (Poole, 1997) and individualistic approaches that reduce stress may paradoxically lead to lower variation between individuals. Husbandry policies should therefore cater to the preferences of the minority as well as the majority (Kruschwitz, Zupan, Buchwalder, & Huber-Eicher, 2008). It should be noted that this does not imply that animals should be routinely housed singly; indeed this can lead to greater

There is also a metaphysical reason for individualism where individuation is necessary to obtain a full description of what is being studied. The fact that individuals, and interindividual variations, are part of the world provides a metaphysical reason for scientific studies to consider individuating animals. Individuals make up part of the world’s ontology, and therefore individuation is necessary for a complete and meaningful description of the world (cf. Dasgupta, 2009; Lewis, 1976; Parfit, 1984). This metaphysical individuation is reflected in practical terms by caregivers who individualize their animals, as described for companion animals (Irvine, 2003, 2007; Taylor, 2007) who are treated like human children (Greenebaum, 2004; Turner, 2001) named (Harris, 1983), and mourned as irreplaceable (Dresser, 2000; Kenney, 2004). Similar individuation may also underlie farmers’ attitudes toward certain individual animals, such as orphan lambs (Holloway, 2001).

More specifically, several studied phenomena occur at the level of the individual. Some involve interactions between individuals, as studied in research on different individual roles in groups (e.g., Bernstein & Strack, 1996; Fischhoff et al., 2007; Rands, Cowlishaw, Pettifor, Rowcliffe, & Johnstone, 1971/2003). Others can be defined in terms of interindividual variations or intraindividual consistency, such as individual learning (see Wechsler & Lea, 2007, for review in farm animals) and some definitions of “personality traits” (e.g., Sapolsky, 1990) or “temperament” (e.g., Box, 1991). Even the investigation of group-level concepts can be usefully analyzed at an individual level (Knowles & Green, 2002), for example, flock flight distance may be analyzed more fully by investigating the actions of individuals (see Petit & Bon, 2010, for review). Individual differences within a group are often considered, for example, in scientific reporting of statistics such as range, standard deviation, and standard error, but these are measures of the group and not of individuals. A comprehensive scientific description should include some consideration of individuals insofar as individuals represent one aspect of the world’s background ontology. For animal welfare science to effectively study such phenomena, the scientific paradigms used may usefully individuate animal subjects.

In particular, where animal welfare scientists aim to appreciate the animal’s point of view (e.g., Dawkins, 1990), there are two specific individualistic elements to consider. The first is the specific quality of individuals’ subjective viewpoints. The very idea of a subjective experience presupposes a subject (Frege, 1918/1967; Strawson, 1958), so an animal’s viewpoint is its individual viewpoint. Furthermore, individuals of many species show evidence of considering themselves individuals, including dolphins (Reiss & Marino, 2001), chimpanzees (Gallup, 1982), elephants (Plotnik, De Waal, & Reiss, 2006), and magpies (Prior, Schwarz, & Güntürken, 2008). The second is how individual
animals relate to one another. Similarly, the aim to take animals’ perspectives must include trying to “get inside” how an animal identifies and relates to other individuals, and this will require animal welfare science individuating each animal in the ways that other animals do, based on data that appear to suggest that animals may relate to another animal individualistically. For example, some individuals appear able to identify other individuals through external appearances, including in cattle (Hagen & Broom, 2003) and sheep (Kendrick & Baldwin, 1987; Kendrick et al., 1995; Kendrick, Da Costa, Leigh, Hinton, & Peirce, 2001). An animal may consequently have a particular relationship with another individual or individuals. For example, a mare may prefer certain mates (e.g., Pickerel, Crowell-Davis, Caudle, & Estep, 1993). Animals may also be able to consider another individual as having a subjective mental state (e.g., pigs, Held, Mendl, Devereux, & Byrne, 2000, 2002; dogs, Miklósi, Polgárdi, Topál, & Csányi, 2005).

Practically, it may also be beneficial to employ more individualistic policies where doing so will improve the level of care given by owners or keepers and thereby lead to welfare improvements. In cases where caregivers do naturally individuate, nonindividualistic policies might unhelpfully conflict with their natural motivations. For example, it could be hypothesized that forcing caregivers to think nonindividualistically may lead to their detachment or dissociation from the animals’ welfare in general, perhaps as an emotional defense mechanism against the moral stress engendered by seeing individuals suffer (Arluke, 1988). In other cases, where keepers do not individuate, engendering such individuation may improve levels of care. For example, nonindividualistic approaches to caring for multiple animals can be associated with reduced caregiver awareness, empathy, and care (Marcus, 2005) and the scope for individuation may underlie consumers’ approval of small-scale farming (Miele & Evans, 2006). Given that consumers are often reported as similarly distancing themselves from the animals they eat as meat (e.g., Frewer & Salter, 2002; McEachern & Schroeder, 2002), linking consumers to individual animals whose produce they consume may also increase consumer concern for the provenance of their meat (Schröder & McEachern, 2004).

One final, ethical, reason for individuation is where we want to employ moral arguments that respect individuals, such as animal rights theories, ethics of care, and liberalist and justice-based approaches. Within Anglo-European traditions, animal welfare science and policy developed alongside other contemporaneous developments, including individualistic nonhuman animal ethics (e.g., Adams & Donovan, 1995; Regan, 1983), individualistic approaches to human ethics such as liberalism (e.g., Rawls, 1971/1999), human rights (e.g., Gewirth, 1982), and extensions of such human ethical approaches to nonhuman animal ethics (e.g., Pluhar, 1995; Rowlands, 1998; VanDeVeer, 1979). Few of these ideologies have had significant influence on animal welfare policy and assessment to date,
with the possible exception of Rollin’s teleological concepts (although these are often applied nonindividualistically, e.g., as “the pigness”; Rollin, 1995, p. 159). Such approaches may conflict with utilitarian moral viewpoints (Lockwood, 1979; Regan, 1983), but individualistic ethical viewpoints can be welfare based because animal welfare does not need to be applied by utilitarian frameworks. For example, a justice-based approach might preclude the utilitarian tactic of harming one individual to benefit the group as a whole and argue that each animal should experience a minimum level of welfare (Yeates, 2010).

FUTURE DEVELOPMENTS

There appear to be good reasons for both individualistic and nonindividualistic approaches within animal welfare science and policy making. As there have been significant recent developments of nonindividualistic animal welfare science and policy making, it is useful to consider potential developments in individualistic approaches within animal welfare scientific experiments and policy making in ways that advance our understanding of behavior and welfare. A full development of more individualistic approaches, without losing the practical advantages of nonindividualistic concepts, is obviously beyond this article. Nevertheless, it is useful to suggest some avenues for further development of individualistic policies based on the earlier characterization of individualism as increased sensitivity to interindividual differences, or to intraindividual connectivity, or to both.

Several developments may recognize interindividual differences. Some may be extensions or adaptations of conventional statistical analyses. For example, interanimal differences are identified within range or standard error reports and through examination of outliers. Further analysis and discussion can show the effects on those individual animals in welfare terms. For example, group-level welfare assessment could weight disproportionate harms to an individual animal in a way that cannot be compensated by smaller benefits to multiple other animals. Recent developments in risk assessment methods and semantic modeling systems for the integration of multiple parameters in farm assessments can allow large weightings to be placed on certain parameters referring to major events, and this is currently suggested for major effects on a large number of animals (e.g., Botreau et al., 2007; Bracke, Edwards, Engel, Buist, & Algers, 2008). Similar models could also weight major effects on single individuals so as to override more widespread benefits. Different conclusions may be generated depending on how important effects on an individual animal are weighted (Müller-Graf et al., 2008).

More radically, more individualistic approaches could provide an argument for altering, or even eschewing, how scientific information is statistically an-
analyzed. For example, excessively focusing on statistical figures may fail to consider some individuals (Whay et al., 2003), so subsequent policies may harm individual statistical “outliers” (Butterworth, 2004). Less aggregative approaches may avoid or offset this risk.

Assessment tools and treatment protocols could take into account the specific characteristics of individuals, such as their age, gender, species, and so on, by further developing the influential concept of “telos,” which has often focused on the species-specific genotype (e.g., Rollin, 1981) or generic phenotype (e.g., Rollin, 1989). Rather than considering “the ‘pigness’ of the pig, the ‘dogness’ of the dog and so on” (Rollin, 2007, p. 132), an individualistic teleological concept could be “the this-pigness of this pig” or “the Jakeness of Jake” (where Jake happens to be a dog).

This increased individualism could be achieved by refining assessments to become more tailored to the individual animal from recognition of “human-animal differences” through “species-specific characteristics” to variations between genders, life stages, and breeds, with each development assessing relative to an increasingly comprehensive and specific description of each animal. This “detailed description” approach can fit with reductionist science with each animal characterized as “the sum of its parts,” although more individualistic approaches must also recognize the connectivity between these parts.

Another way to recognize interindividual differences would be to allow greater flexibility for caregivers to tailor their assessment and behavior to each individual animal. Flexibility could be afforded to allow individual caregivers to select what is needed by the individual animals for which they care. This approach can be considered an extension of the flexibility regarding inputs within the recent Welfare Quality Project (Botreau, Veissier, & Perny, 2009). This “casuistic flexibility” approach would rely on caregivers’ knowledge and intelligence to recognize variations between individuals’ behavioral needs rather than defining generic, fixed inputs or outcomes for all members of a class.

Other developments could involve increased recognition of intraindividual connectivity. Assessments could focus on concepts that relate to the connectivity of a number of component parts of the same individual over a given period. For example, the concept of quality of life (Yeates & Main, 2009) and its extension over an animal’s whole life as a “life-worth-living” (FAWC, 2009; Yeates, 2011, 2012) are individualistic concepts. Similarly, some recent scientific research has mirrored this individualism (European Parliament Science and Technologies Options Assessment [STOA], 2007), such as qualitative “whole animal” approaches (e.g., Wemelsfelder, Hunter, Mendl, & Lawrence, 2001), “overall welfare” assessment (as per Bracke, Spruitj, & Metz, 1999a, 1990b), and work on individual variations (e.g., Boissy & Bouissou, 1995; Dreschel, 2010). For practical purposes, such animal welfare science and policy may use nonindividualistic “indicators” of an individual’s overall welfare but
without the categorical error of then taking these parameters to be animal welfare.

Another way to recognize interconnectivity is to use novel welfare concepts that are reflexive. Animal welfare science might employ concepts similar to those used in human-focused policy, such as self-fulfillment, autonomy, self-determination, and personal capacities. This approach could include evaluating the satisfaction or frustration of each individual’s motivations. This “reflexivity approach” could therefore develop from methodologies within the animal welfare scientific literature, such as preferences and motivation tests, or within the animal philosophy literature, such as capacities, which are otherwise usually related to generic or species-specific conclusions (e.g., Nussbaum, 2004).

The most individualistic developments will be those that achieve greater recognition of both interindividual differences and intraindividual connectivity. Assessment tools and treatment protocols could take into account the specific, different characteristics of the individual not only in terms of interanimal differences but also in terms of the connectivity of their experiences, for example, by considering each animal’s particular psychology, learning history, likes, dislikes, and desires. The value an animal appears to place on a given resource would influence how important that resource is considered in assessing (or achieving) that animal’s overall welfare. For example, rather than assessing Jake’s welfare in terms of his performance of behaviors that dogs do “normally” (e.g., burying bones and chasing cats), we can assess his performance of behaviors that he personally enjoys or is motivated to perform (e.g., sleeping on an armchair and opening the refrigerator). In human medicine, tools often use a two-stage process in which clients rate what criteria are important to them and then rate their lives according to such criteria (Flanagan, 1978); a similar process could be trialed for animal welfare assessment.

To this end, animal welfare researchers may adapt scientific assessment methods. They may also use novel sources of assessment methods from nonscientific disciplines (Yeates, Röcklingsberg, & Gjerris, 2011). These may include nonscientific empirical data, such as qualitative descriptions of the “life narrative” of an individual animal (Tsovel, 2005). Given the importance of individualism in human health care and policy making (see DeGrazia, 2005), they may adapt ideas from humanist disciplines employed within “human welfare science” such as psychology and quality-of-life research (see Yeates & Main, 2009). For example, assessments of human interests have been increasingly tailored to focus on individual concepts (e.g., Flanagan, 1978; Keyes, Shmotkin, & Ryff, 2002), and these approaches are used even when considering humans “at the group level” (e.g., for resource allocation). These sciences may be expected to share many of the practical, epistemological, and ethical presuppositions of animal welfare science, yet the assessment of animal interests and policy making about
animals have not paralleled the ideological developments in assessing human welfare and policy.

DISCUSSION

A challenge for animal welfare scientists and policymakers developing individualistic approaches will be ensuring that the benefits of nonindividualistic approaches are not lost. In some cases, individualistic and nonindividualistic approaches may conflict. For example, allowing stockmen to treat each animal as an individual must be combined with ensuring that all animals’ generic needs are satisfied. Allowing greater flexibility may require additional training and safeguards to ensure competence. There may also be practical barriers to some individuation; for example, it may be harder in situations where keepers have responsibility for multiple animals. A significant body of work will be needed to identify how to combine the benefits of individualistic and nonindividualistic approaches.

In other cases, the approaches will be complementary. The assessment of individuals’ motivations would often overlap with consideration of natural behaviors or species-specific psychological needs. Similarly, tailoring treatment to individuals may begin with generic inputs (e.g., an average drug dosage) and titrate based on physiological and behavioral responses as a combination of generic starting points and individualistic flexible responsiveness. One approach to combine both may be to give all animals some generic welfare opportunities from which each can choose his or her resources and behavior according to his or her own individual nature (Parker & Yeates, 2011). Each animal may realize some of an overall set of ends, depending on his or her individual characteristics. Rather than providing inputs that members of a species generally utilize, inputs could be provided that only some individuals are motivated to use. This would be especially useful insofar as an animal’s individual characteristics are not always stable over time.

CONCLUSION

Both individualistic and nonindividualistic approaches may be useful in different cases and for different purposes. There are increasingly well-developed nonindividualistic approaches, but it would be beneficial to develop more individualistic approaches to policy making, including those based on quality of life, welfare opportunities, and caregivers’ flexibility. These changes should be made alongside less individualistic approaches so as to draw upon the benefits of each.
REFERENCES

